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Abstract. The on-line learning of a mixture-of-experts system is studied in the framework
of statistical physics. The time dependence of the overlap-order parameters during training is
calculated analytically in the thermodynamic limit. When the number of training examples is
small each expert is in a symmetric state. As the number of time steps approaches a critical point,
the symmetric state begins to disintegrate. This symmetry-breaking behaviour is accounted for
by means of a gating network. In the symmetric state the gating network has little effect on the
learning, but when the symmetry is broken the gating network assigns the experts to appropriate
subspaces in the input space. A generalization curve shows a plateau between the symmetric- and
broken-symmetry states. We also find that the learning curves show different behaviours depending
on the stiffness of the gating function.

1. Introduction

A neural network can be trained using a set of examples. It learns the input–output relations
of the example set and subsequently is able to assign an output to a novel input. Such general-
ization ability makes it possible to use neural networks for classification and regression tasks.

Since a simple perceptron was studied by Sompolinsky et al and György et al [1–5] there
have been many studies on neural networks with various architectures, such as multilayer per-
ceptrons and modular networks. Investigation of neural network generalization has been suc-
cessfully performed using statistical mechanics tools. With this approach learning is regarded
as a stochastic process generating a Gibbs distribution in the network weight-space. Kang et al
[3] showed that symmetry-breaking phenomena exist in the learning of a committee machine.
Such symmetry-breaking phenomena have been found repeatedly in multilayer networks.

In recent years there has been significant interest in on-line learning of neural networks
and learning dynamics.

In on-line learning, examples are given one by one and the weights are updated according
to the most recent example. On-line learning studies can give a better understanding of
realistic situations because of the obvious similarity to a practical implementation of a back-
propagation algorithm. On-line learning is described as a dynamic evolution of weights, and
the generalization error is calculated numerically by solving the differential equations of the
order parameters. Since Biehl and Schwarze’s work [6] on perceptrons and simplified models
of multilayer networks, the dynamics of on-line learning has been widely investigated [7–11].
Saad et al showed that a soft-committee machine can be analysed using this on-line learning
approach and since then much related research has been carried out.

Among the various kinds of multilayer networks, modular networks are of considerable
interest due to their productive generalization capability [4, 5, 12–15]. In a modular network,
parts of the neural network become modules in a larger structure. A complex task is divided
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into relatively simple ones and each of the resulting subtasks can be solved effectively by a
module. The mixture-of-experts system is a well known example that elegantly implements
the philosophy of divide-and-conquer [4, 12, 13]. Some gating networks divide tasks into
smaller ones, and the subtasks are then assigned to the appropriate experts. Such a strategy
can be a powerful tool for solving a mixed task with different local rules. Whilst modular
networks have been mostly interpreted in the framework of statistics, a statistical physics
approach has also been found to be successful [4, 5]. In a previous paper, we studied the
generalization capability of a mixture of experts using equilibrium statistical physics [4]. The
learning curve as a function of off-line examples shows an interesting phase transition that is
related to permutation-symmetry breaking.

Here we present theoretical results for on-line learning of a mixture of experts. We
find that the learning curve has interesting features, such as a plateau that is related to a
permutation-symmetric fixed point similar to the one that was found in the learning curves of
a soft-committee machine. We study the behaviour of the learning curves according to the
stiffness of the gating function, and find that the stiffness is an important parameter determining
the characteristics of learning, both in the symmetric and the broken-symmetry states.

In section 2, the model and the on-line learning rules of a mixture-of-experts network
are introduced. The generalization error and overlap-order parameters are also defined. In
section 3, we investigate the properties of this network using specific examples and analytic
results are compared with simulated results. In section 4 we discuss the results and propose
future studies that could lead to a better understanding of mixture-of-experts systems.

2. Learning and generalization

In on-line learning, the weights of a student network are updated following the error gradient
corresponding to the latest in a sequence of examples. The student network is trained using the
examples given by a teacher network with the same architecture as the student network. The
resulting changes in the weights are represented as difference equations of order parameters
that show the degree of overlap between the weights of the student network and the teacher
network. In the thermodynamic limit, where the input dimension goes to infinity, these
difference equations can be considered as differential equations, and the examples play the
role of continuous time. Solving these differential equations leads to the generalization ability
of the student network.

2.1. Model and learning rules

The mixture-of-experts system [12] is a tree consisting of expert and gating networks. The
expert networks sit on the leaves of the tree, whilst the gating networks sit at the tree’s branching
points and assign weights to the outputs of the experts. For simplicity, we consider a network
with one gating network and two experts. The output of each expert is given by

µj = f (Wj · x) j = 1, 2 (1)

where Wj is the weight vector of the j th expert, and f (x) = erf(x/
√

2) is a nonlinear,
differentiable, transfer function. The principle of divide-and-conquer is implemented by
assigning each expert to the subspace of an input space with different local rules. A gating
network partitions the input space and assigns each expert a weighing factor:

νj = g(Vj · x) j = 1, 2 (2)

where Vj is a weight vector corresponding to the j th output node of the gating network. Here
we use the gating function g(x) = 1

2 (1 + erf(d x√
2
)) and d controls the stiffness of the gating
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function. For two experts, this gating function provides a boundary between the two subspaces
that is perpendicular to the vector V1 = −V2 = V . The sum of the weights is unity and the
output of the gating network can be regarded as the probability of selecting each expert. If
the slope d is large, the function forms a sharp boundary between the two subspaces. If d

is small, the boundary is rather soft and there is an intermediate region where both expert
networks contribute. In the limit, as d goes to zero, ν1 = ν2 = 1/2 results for each input
x. The network then has the same properties as a soft-committee machine [7]. Therefore,
d regulates the overlap between subspaces. Now, the weighted output from the mixture of
experts is written as

σ(V , {Wj }; x) =
2∑

j=1

g(Vj · x)f (Wj · x). (3)

The network learns rules from training examples generated by a teacher network that has
the same architecture:

σ 0(V 0, {W 0
j }; x) =

2∑
j=1

g(V 0
j · x)f (W 0

j · x) (4)

where V 0
j and W 0

j are the j th weight vectors of the gating network and of the expert of
the teacher network respectively. When using a mixture-of-experts system learning has
probabilistic interpretations, where the learning algorithm is considered as a maximum-
likelihood estimation. Statistical methods such as the expectation-maximization (EM)
algorithm are often used. However, if we assume a Gaussian distribution, a maximum-
likelihood estimation can be made by minimizing the usual quadratic-error function

ε(V , {Wj }; x) = 1
2 [σ(V , {Wj }; x) − σ 0(V 0, {W 0

j }; x)]2. (5)

The on-line learning rule for the student weight vectors [6] Vj and Wj is written as

V p+1 = V p − η

N
[σ(V p, {W p

j }; xp) − σ 0(V 0, {W 0
j }; xp)]g′(tp)[f (y

p

1 ) − f (y
p

2 )]xp (6)

W
p+1
j = W

p

j − η

N
[σ(V p, {W p

j }; xp) − σ 0(V 0, {W 0
j }; xp)]f ′(yp

j )g((−1)j−1tp)xp (7)

where y
p

j = W
p

j · xp and tp = V p · xp are the internal fields of the j th expert, and the
gating network for the pth pattern, respectively. The learning rate η is scaled with the network
size N . In the thermodynamic limit where N goes to infinity, we may consider α = p/N

as a continuous time. Equations (6) and (7) can be transformed to differential equations for
the corresponding order parameters. The generalization error is obtained from the numerical
solutions of these differential equations.

2.2. Generalization error and overlap-order parameters

We measure the performance of the student network by the generalization error of this network.
The generalization error is defined as

εg(V , {Wj }) = 〈ε(V , {Wj }; x)〉x (8)

where 〈· · ·〉x represents an average over all possible input vectors. Input vectors are drawn
independently from the Gaussian distribution with zero mean and unit variance.

After equation (8) is averaged over the input, the generalization error εg(V , Wj ) can be
expressed as a function of the overlap-order parameters between the student and the teacher
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weight vectors:

εg(V , {Wj }) = 1

2π2

[{
sin−1

(
d2

s T

1 + d2
s T

)
+

π

2

}

×
{ 2∑

i=1

sin−1

(
Qi

1 + Qi

)
− 2 sin−1

(
q√

(1 + Q1)(1 + Q2)

)}

−2

{
sin−1

(
dsdtS√

(1 + d2
t )(1 + d2

s T )

)
+

π

2

}

×
{ 2∑

i=1

sin−1

(
Ri√

2(1 + Qi)

)
−

2∑
i=1

sin−1

(
ri√

2(1 + Qi)

)}

+2π

{
sin−1

(
q√

(1 + Q1)(1 + Q2)

)
−

2∑
i=1

sin−1

(
ri√

2(1 + Qi)

)}

+
π

3

{
sin−1

(
d2

t

1 + d2
t

)
+

π

2

}]
(9)

where the overlap-order parameters are defined as

Rj = Wj · W 0
j Qj = Wj · Wj

r1 = W1 · W 0
2 r2 = W2 · W 0

1 q = W1 · W2

S = V · V 0 T = V · V .

In the thermodynamic limit, α/N can be considered as a continuous variable. The subsequent
difference equations (6) and (7), can be rewritten as differential equations using the overlap-
order parameters:

dRj

dα
= η〈δj zj 〉 dQj

dα
= 2η〈δjyj 〉 + η2〈δ2

j 〉
dr1

dα
= η〈δ1z2〉 dr2

dα
= η〈δ2z1〉

dq

dα
= η〈δ2y1〉 + η〈δ1y2〉 + η2〈δ1δ2〉

dS

dα
= η〈δs〉 dT

dα
= 2η〈δt〉 + η2〈δ2〉

(10)

where the internal fields of the teacher network zj , s and other related functions are defined as

δj = [σ 0(V 0, {W 0
j }; x) − σ(V , {Wj }; x)]f ′(yj )g((−1)j−1t)

δ = [σ 0(V 0, {W 0
j }; x) − σ(V , {Wj }; x)]g′(t)(f (y1) − f (y2))

zj = W 0
j · x s = V 0 · x.

For the order parameter Rj , rj and S, the average in equation (10) can be calculated exactly, as
seen from equations (A.1), (A.2) and (A.5) in the appendix. Here, we consider the condition
that the learning rate η is small, so that the equations for the order parameters Qj, q and T

can be approximated by the first-order terms of η. We can subsequently calculate analytical
solutions for these differential equations, as seen from equations (A.3), (A.4) and (A.6) in the
appendix. The time evolution of the generalization error, equation (9), can be calculated using
the numerical values of the order parameters.
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Figure 1. Learning curves of the mixture-of-experts system with d = 0.1 and d = 0.2: lines
show the analytical results and symbols show the simulated results. (a) The generalization error
(εg versus α for the learning rate η = 0.1 with network size N = 100). (b) Time evolution of the
overlapping order parameters R1, r1 and S.

From these order parameters and the generalization error, we find the typical behaviour
of learning curves in on-line learning of the mixture-of-experts system. In the next section,
we present several examples and compare these analytical results with simulated results.

3. Results

3.1. The case with the same stiffness (ds = dt = d)

We consider the case where the stiffnesses of the gating functions of the student and teacher
networks are the same (ds = dt), and show learning curves from analytical calculations and
from numerical simulation for a large network. The simulations were performed with a network
of size N = 100. We find that the analytical results agree well with the simulated results.

Figure 1(a) shows the generalization error as a function of α with learning rate η = 0.1.
The behaviour of the order parameters is shown in figure 1(b). Figure 1(a) shows two states of
the learning process: the permutation-symmetric state; and the broken-symmetry state. Before
the symmetry breaks, the generalization error converges to a relatively high value, and the curve
shows a plateau where the error remains constant with increasing α. In this symmetric state,
the order parameters S and T are nearly zero, and the order parameters related to the experts
show symmetric behaviour (Ri = ri and Qi = q). Therefore, the gating network has no effect
on the learning, and the role of each expert has not yet become specialized.

A mixture-of-experts system does not use the advantages of a modular network in the
symmetric phase. When α reaches a critical point, the symmetry between experts begins
to break and the gating network learns how to divide the input space. As α increases, the
order parameters S and T approach 1, indicating that the gating network has learnt the rule
perfectly. The order parameters Ri and ri branch at the critical point and approach unity
and zero, respectively. This result reveals that the gating network divides the input space
appropriately and assigns each expert the corresponding subspace. In the broken-symmetry
state, each expert learns its local rule and this mixture-of-experts system successfully performs
the divide-and-conquer strategy.

We next compare two networks that have different stiffness. The network with a larger d

approaches the critical point at smaller α and the generalization error is smaller in the large α
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Figure 2. Learning curves of the mixture-of-experts system with ds = 1.0, ds = 1.5 and ds = 2.0
for fixed dt = 0.15, where ds and dt mean the stiffness of a student and of a teacher gating network,
respectively. Lines show the analytic results and symbols show the simulated results. (Inset: the
same curves are plotted using a log scale.)

limit. This is related to the role of the gating network in the learning process of the mixture-
of-experts system. When d is large, the subspaces assigned to experts are easy to discriminate,
so that the broken-symmetry state appears at small α and the generalization error is also small.

3.2. The case with different stiffness (ds �= dt)

We now study examples where the stiffnesses of the gating functions of the student and teacher
networks are different (ds �= dt). These examples show the effect of the mixture-of-experts
gating function when we do not know the stiffness of the teacher gating network.

In figure 2, we see that the learning curves show different behaviour according to the
stiffness of the student network, although the teacher network is the same in all cases. In the
symmetric state, the generalization error is the same, but the length of the plateau becomes
shorter as ds increases. As explained above, the gating networks of the students have no effect
on learning in the symmetric state, so that the generalization error at the plateau is solely
determined by the teacher network. When d is large, the critical point at the beginning of the
broken-symmetry state appears when α is small because student networks with large d easily
discriminate the subspace assigned to each expert. In the broken-symmetry state, as shown in
the inset of figure 2, the learning curve becomes steeper as ds increases.

From these results, we find that student networks with larger ds learn the rules of the
teacher network better. We also find, however, the existence of local minima in the learning of
a mixture-of-experts system with large d, indicating that the selection of an optimal stiffness
is necessary for efficient learning.

3.3. Local minima

To understand the nature of local minima, we explicitly analyse the time evolution of a small net-
work. The network size is N = 3 and the initial weights are randomly chosen from a Gaussian
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Figure 3. Learning curves of the mixture-of-experts system trapped in a local minimum (learning
rate η = 0.005 with network size N = 3 and ds = dt = 1.0): a circle indicates a weight space
projected into two dimensions. In the circle, the arrow with a solid line is the weight vector of the
teacher expert and the arrow with a dash-dot line is that of the student expert. The solid line and
the dash-dot line are the boundaries between subspaces given by the gating network of the teacher
and the student, respectively. (a) The generalization error (εg versus α). (b) The overlapping order
parameters R1, r1 and S are shown for the same case.

distribution. In figure 3, we show an example trapped in a local minimum, where the general-
ization error approaches a value larger than zero, and several different broken symmetry fixed
points are also found. Each fixed point corresponds to a different final value of the residual error.

The circle in figure 3 is a weight space projected into two dimensions. Lines in the circle
are the boundaries between two subspaces assigned to the experts, which are determined by
the gating networks of the student and the teacher. Different boundaries show that the student
gating network does not learn the rule of the teacher gating network. The arrows are the
weight vectors of the student and the teacher. Since the student gating network assigns the
wrong subspaces to the experts, the student experts cannot learn the rules of the corresponding
teacher experts. Thus, the learning curve does not approach the perfect broken-symmetry state,
as shown in figures 3(a) and (b).

Local minima occur in cases that have the same or different stiffnesses of the gating
functions. These phenomena may be explained by the analysis of fixed points and their
stabilities in the dynamics of the order parameters. When the slope d is small, the forms of the
output function and the error surface are smooth. Only the global minimum becomes a stable
fixed point in the learning of a mixture-of-experts system when d is small. As the stiffness
increases, other stable fixed points, i.e. local minima, occur.
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4. Conclusion

We find the analytical solutions for on-line learning of a mixture-of-experts system, and apply
these models to several examples. We find that a symmetric and a broken-symmetry state
exist in a learning curve. The generalization error and the overlap-order parameters show
plateaus in the learning curves, as is the case for a soft-committee machine. However, in the
mixture-of-experts system the symmetry is broken by the gating network, which assigns the
appropriate subspaces to the experts.

These symmetric phenomena are also found in batch learning of a mixture-of-experts
system. In batch learning, however, it is difficult to study the effects of gating networks in the
training of a mixture-of-experts system. As a result, we must study on-line learning to analyse
the role of the gating network.

The effects of the learning rate have previously been investigated mainly in on-line learning
of neural networks with various architectures, i.e. a simple perceptron, a soft-committee
machine and a radial basis function (RBF) network. In a mixture-of-experts system, however,
the stiffness of the gating function is an important parameter that determines the behaviour of
the learning curves, as well as the learning rate. In this paper, we investigated the role of the
gating function in the on-line learning of a mixture-of-experts system.

In cases where a student and a teacher gating network have the same or different stiffnesses,
the behaviour of the learning curve and the critical point both depend on the magnitude of the
slope d. The properties in the symmetric state are determined by the teacher network. In the
broken-symmetry state, the student network determines the steepness of the learning curve.
We find that the student network can easily learn the rules when d is large (the overlap between
subspaces assigned to experts is small). This reveals that the stiffness of the gating function is
important in the learning of the mixture-of-experts system. As local minima may occur when
d is large, the selection of optimal stiffness is essential in the learning of a mixture-of-experts
system.

To find an optimal stiffness of a gating function, it is necessary to investigate the locations
of local minima and their stabilities using analysis of fixed points in the dynamics of the order
parameters. In future work we will study the analysis of the fixed points in order to find
optimal parameters for efficient learning. This study may be expanded to a piece-wise linear
model with a linear activation unit for an expert network. It would be interesting to study a
hierarchical mixture of experts, which is applicable to more complex tasks.
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Appendix

The order parameters related to experts are Ri, ri, Qi and q. The overlaps Ri and ri between
a teacher and a student expert are given by

dRi

dα
= η

π2(1 + Qi)

[{
sin−1

(
d2

s T

1 + d2
s T

)
+

π

2

} −Ri√
1 + 2Qi

+

{
sin−1

(
dsdtS√

(1 + d2
t )(1 + d2

s T )
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+

π

2

}
1 + Qi − R2
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dri

dα
= η

π2(1 + Qi)

[{
sin−1

(
d2

s T

1 + d2
s T

)
+

π

2

} −ri√
1 + 2Qi

−
{

sin−1

(
dsdtS√

(1 + d2
t )(1 + d2

s T )

)
+

π

2

}
riRi√

2(1 + Qi) − R2
i

+

{
sin−1

(
dsdtS√

(1 + d2
t )(1 + d2

s T )

)
− π

2

}
r2
i − (1 + Qi)√
2(1 + Qi) − r2

i

+

{
sin−1

(
d2

s T

1 + d2
s T

)
− π

2

}
Rj(1 + Qi) − riq√

(1 + Qi)(1 + Qj) − q2

]
i �= j. (A.2)

The magnitudes of the student weight vectors Qi are given by

dQi
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The overlap q between weight vectors of different student experts is given by
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t )(1 + d2

s T )

)
− π

2

}−R1(1 + Q2) + qr2√
2(1 + Q2) − r2

2
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−
{

sin−1

(
d2

s T

1 + d2
s T

)
− π

2

} −Q1(1 + Q2) + q2√
(1 + Q1)(1 + Q2) − q2

]
. (A.4)

The order parameters related to gating networks are S and T . The overlap S between a
teacher and a student gating network is given by

dS

dα
= η

π2(1 + d2
s T )

[{ 2∑
i=1

(
sin−1

(
Ri√

2(1 + Qi)

)
− sin−1

(
ri√

2(1 + Qi)

))}

× dsdt(1 + d2
s T ) − d2

s d2
t S2√

(1 + d2
t )(1 + d2

s T ) − d2
s d2

t S2

+

{ 2∑
i=1

sin−1

(
Qi

1 + Qi

)
− 2 sin−1

(
q√

(1 + Q1)(1 + Q2)

)} −d2
s S√

1 + 2d2
s T

]
.

(A.5)

The magnitude of a student weight vector T is given by

dT

dα
= 2η

π2(1 + d2
s T )

[{ 2∑
i=1

(
sin−1

(
Ri√

2(1 + Qi)

)
− sin−1

(
ri√

2(1 + Qi)

))}

× dsdtS√
(1 + d2

t )(1 + d2
s T ) − d2

s d2
t S2

+

{ 2∑
i=1

sin−1

(
Qi

1 + Qi

)
− 2 sin−1

(
q√

(1 + Q1)(1 + Q2)

)} −d2
s T√

1 + 2d2
s T

]
.

(A.6)
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